Math 206A Lecture 19 Notes

Daniel Raban

November 9, 2018

1 Bar and Joint Frameworks and Rigidity

1.1 Frameworks and static rigidity

Definition 1.1. A bar and joint framework is a pair (G, L) where G = (V, E) is a graph, and L is a length function such that L(e) is the length of $e_{i,j}$.

Definition 1.2. A realization of a bar and joint framework is a map $f : V \to \mathbb{R}^d$ such that for all edges e = (i, j), |f(i) - f(j)| = L(e).

This gives us a new interpretation of Cauchy's theorem.

Theorem 1.1. If $P \subseteq \mathbb{R}^3$ is a simplicial polytope and (G, L) is a corresponding framework, then there exists a unique convex realization of (G, L).

Here is a corollary of the 4-color theorem.

Theorem 1.2. Suppose G is a planar graph, and L(e) = 1 for all e. Then there exists a realization $f: G \to \mathbb{R}^3$.

Definition 1.3. A realization is **statically rigid** if there does not exist a nonzero function $\lambda : E \to \mathbb{R}$ such that for every $v \in V$, $\sum_{(v,w)\in E} \lambda((v,w)) \cdot (vw) = 0$, where vw denotes the vector from v to w in \mathbb{R}^3 .

The function λ basically allows us to change the length slightly to have a little flexibility in our realizations.

1.2 Dehn's rigidity theorem

Theorem 1.3 (Dehn). Let (G, L) be a framework of a simplicial polytope in \mathbb{R}^3 . Then it is statically rigid.

B. Fuller came up with an architectural design for a dome which is statically rigid. It needs to pillars to stand up. You can prove that it is statically rigid using Dehn's theorem.

Definition 1.4. Let each vertex be $v_i = (x_i, y_i, z_i)$. Construct a $3n \times 3n - 6$ matrix as follows:

The **rigidity matrix** R_G is the $(3n-6) \times (3n-6)$ where we delete 6 of the columns.

Static rigidity means that the rigidity matrix R_G has full rank. The idea of deleting the 6 columns is that we are grounding a triangular face of the polytope.

Lemma 1.1. Dehn's theorem is equivalent to $det(R_G) = 0$.

Proof. Here is the idea. The determinant of R_G is the sum of terms times (-1) to the something. We show that there is at least 1 nonzero term, and then we show that all terms have the same sign.